Predicting mechanical failure of polycrystalline dual-phase nickel-based alloys by numerical homogenization using a phase field damage model

Author:

Huber Jakob,Vogler Jonas,Torgersen Jan,Werner Ewald

Abstract

AbstractBrazing of nickel-based alloys plays a major role in the assembly of turbine components, e.g., abradable sealing systems. In a brazed joint of nickel-based alloys a composition of brittle and ductile phases can be formed if the brazing conditions are not ideal. This heterogeneous microstructure is a crucial challenge for predicting the damage behavior of a brazed joint. The initiation and evolution of microdamage inside of the brittle phase of a virtual dual-phase microstructure representing the material in a brazed joint is studied by means of numerical simulations. A phase field approach for brittle damage is employed on the microscale. The simulation approach is capable of depicting phenomena of microcracking like kinking and branching due to heterogeneous stress and strain fields on the microscale. No information regarding the initiation sites and pathways of microcracks is needed a priori. The reliability of calculating the effective critical energy quantities as a microstructure-based criterion for macroscopic damage is assessed. The effective critical strain energy density and the effective critical energy release rate are evaluated for single-phase microstructures, and the approach is transferred to dual-phase microstructures. The local critical strain energy density turns out to be better suited as a model input parameter on the microscale as well as for a microstructure-based prediction of macroscopic damage compared to a model employing the energy release rate. Regarding the uncertainty of the model prediction, using the effective critical energy release rate leads to a standard deviation which is five times larger than the standard deviation in the predicted effective critical strain energy density.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3