Thermodynamic model: steam and oxidative reforming of methane over nickel catalyst

Author:

Rakhi ORCID,Mauss Fabian

Abstract

AbstractIn this paper, we have used a thermodynamic model for the first time to investigate the steam and oxidative reforming of methane over a nickel catalyst in a wide temperature range, i.e., 400–1200 K. The available literature focus on the kinetic models and hence, thermodynamic models require attention to understand the behaviour of the thermochemistry of the species involved in the mechanism. This study presents the comparison between the species concentration produced using the thermodynamic model against the available kinetic model to validate the results. The investigation is further extended, firstly, to perform the sensitivity analysis of the reactions involved in a thermodynamic model to figure out the most influential reactions at various temperatures and pressures. This allows us to compare the most influencing reactions in reforming process for kinetic and thermodynamic model to optimize the processes. Secondly, the reaction flow analysis is carried out for the thermodynamic model to comprehend the effect of the thermochemistry of the species and the major difference in the reaction pathways for both the models are noted.

Funder

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3