Attaining freshwater and estuarine-water soil saturation in an ecosystem-scale coastal flooding experiment

Author:

Hopple A. M.,Doro K. O.,Bailey V. L.,Bond-Lamberty B.,McDowell N.,Morris K. A.,Myers-Pigg A.,Pennington S. C.,Regier P.,Rich R.,Sengupta A.,Smith R.,Stegen J.,Ward N. D.,Woodard S. C.,Megonigal J. P.

Abstract

AbstractCoastal upland forests are facing widespread mortality as sea-level rise accelerates and precipitation and storm regimes change. The loss of coastal forests has significant implications for the coastal carbon cycle; yet, predicting mortality likelihood is difficult due to our limited understanding of disturbance impacts on coastal forests. The manipulative, ecosystem-scale Terrestrial Ecosystem Manipulation to Probe the Effects of Storm Treatments (TEMPEST) experiment addresses the potential for freshwater and estuarine-water disturbance events to alter tree function, species composition, and ecosystem processes in a deciduous coastal forest in MD, USA. The experiment uses a large-unit (2000 m2), un-replicated experimental design, with three 50 m × 40 m plots serving as control, freshwater, and estuarine-water treatments. Transient saturation (5 h) of the entire soil rooting zone (0–30 cm) across a 2000 m2 coastal forest was attained by delivering 300 m3 of water through a spatially distributed irrigation network at a rate just above the soil infiltration rate. Our water delivery approach also elevated the water table (typically ~ 2 m belowground) and achieved extensive, low-level inundation (~ 8 cm standing water). A TEMPEST simulation approximated a 15-cm rainfall event and based on historic records, was of comparable intensity to a 10-year storm for the area. This characterization was supported by showing that Hurricane Ida’s (~ 5 cm rainfall) hydrologic impacts were shorter (40% lower duration) and less expansive (80% less coverage) than those generated through experimental manipulation. Future work will apply TEMPEST treatments to evaluate coastal forest resilience to changing hydrologic disturbance regimes and identify conditions that initiate ecosystem state transitions.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3