3D scaffolds of caprolactone/chitosan/polyvinyl alcohol/hydroxyapatite stabilized by physical bonds seeded with swine dental pulp stem cell for bone tissue engineering

Author:

Reyna-Urrutia V. A.ORCID,Estevez MiriamORCID,González-González A. M.ORCID,Rosales-Ibáñez R.ORCID

Abstract

AbstractBone Regeneration represents a clinical need, related to bone defects such as congenital anomalies, trauma with bone loss, and/or some pathologies such as cysts or tumors This is why a polymeric biomaterial that mimics the osteogenic composition and structure represents a high potential to face this problem. The method of obtaining these materials was first to prepare a stabilized hydrogel by means of physical bonds and then to make use of the lyophilization technique to obtain the 3D porous scaffolds with temperature conditions of −58 °C and pressure of 1 Pa for 16 h. The physicochemical and bioactive properties of the scaffolds were studied. FTIR and TGA results confirm the presence of the initial components in the 3d matrix of the scaffold. The scaffolds exhibited a morphology with pore size and interconnectivity that promote good cell viability. Together, the cell viability and proliferation test, Alamar BlueTM and the differentiation test: alizarin staining, showed the ability of physically stabilized scaffolds to proliferate and differentiate swine dental pulp stem cell (DPSCs) followed by mineralization. Therefore, the Cs-PCL-PVA-HA scaffold stabilized by physical bonds has characteristics that suggest great utility for future complementary in vitro tests and in vivo studies on bone defects. Likewise, this biomaterial was enhanced with the addition of HA, providing a scaffold with osteoconductive properties necessary for good regeneration of bone tissue.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3