Author:
Jin Baoyan,Zhang Chongjing,Zhong Zeyuan,Liu Zichen,Zhang Zhenhua,Li Dejian,Zhu Min,Yu Baoqing
Abstract
AbstractEarly fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes secondary damage to them. The development of new degradable internal fracture implants has attracted more and more attention from orthopedic surgeons and researchers. Based on these problems, we improved the various properties of medical grade polycaprolactone (PCL) by adding poly(L-lactide) (PLLA). We produced PCL/PLLA strapping bands with different mass ratios by injection molding. We compared the mechanical properties, degradation properties, cell biocompatibility, bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, osteogenic differentiation and fracture fixation effect of these strapping bands. The results showed that the tensile strength and yield force of the strapping bands increased with the increase of the content of PLLA. The addition of PLLA could significantly improve the mechanical strength in the early stage and accelerate the degradation rate of the strapping band. PCL/PLLA (80/20) strapping band had no significant cytotoxicity toward rBMSCs and could promote osteogenic differentiation of rBMSCs. The strapping band could ensure femoral fracture healing of beagles in 3 months and didn’t cause damage to the surrounding tissues and main organs. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture.
Graphical Abstract
Funder
the Outstanding Clinical Discipline Project of Shanghai Pudong
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials,Bioengineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献