Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures

Author:

Zhu Hongxia,Liu Xianyu,Jiang Yuan,Lin Daohui,Yang Kun

Abstract

AbstractSorption kinetics of organic compounds on biochars is important for understanding the retardation of mobility and bioavailability of organic compounds. Herein, sorption kinetics of 1,3,5-trinitrobenzene on biochars prepared from 200 to 700 °C was investigated to explore the sorption process. Loose partition matrix and condensed partition matrix were formed at relatively low and moderate temperatures, respectively. However, biochars produced at relatively high temperatures formed rich pore structures. Therefore, sorption equilibrium time of 1,3,5-trinitrobenzene increased with increasing preparation temperature from 200 to 350 °C due to the slower diffusion rate in the more condensed matrix, and then decreased when preparation temperature was higher than 400 °C because of the faster adsorption rate in the greater number of pores. Linear positive relationship between matrix diffusion rates of 1,3,5-trinitrobenzene on biochars prepared at 200, 250, 300, 350 °C and H/C ratios of biochars was observed, suggesting that the inhibition of partition process was caused by the condensed matrix in biochars. Linear positive relationships between adsorption rates (i.e., fast outer diffusion rate and slow pore diffusion rate) of 1,3,5-trinitrobenzene on biochars prepared at 400, 450, 550, 700 °C and graphite defects of biochars were observed, because the increase of graphite defects of biochars could promote the adsorption by increasing the quantity of fast diffusion channels and sorption sites. This study reveals the underlying mechanisms of sorption kinetics for organic compounds with relatively large size on biochars, which has potential guidance for the application of biochars and prediction of the environmental risks of organic compounds. Graphical Abstract

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Key Research and Development Program of Zhejiang Province, China

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3