Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities

Author:

Jiang Mengyuan,He Lizhi,Niazi Nabeel Khan,Wang Hailong,Gustave Williamson,Vithanage Meththika,Geng Kun,Shang Hua,Zhang XiaokaiORCID,Wang Zhenyu

Abstract

AbstractAlthough research on biochar has received increasing attention for environmental and agricultural applications, the significance of nanobiochar for environmental pollutant  remediation is poorly understood. In contrast to bulk biochar, nanobiochar has superior physicochemical properties such as high catalytic activity, unique nanostructure, large specific surface area and high mobility in the soil environment. These unique characteristics make nanobiochar an ideal candidate for pollution remediation. Thus far, the research on nanobiochar is still in its infancy and most of the previous studies have only been  conducted for exploring its properties and environmental functions. The lack of in-depth summary of nanobiochar’s research direction makes it a challenge for scientists and researchers globally. Hence in this review, we established some key fabrication methods for nanobiochar with a focus on its performance for the removal of pollutants from the environment. We also provided up-to-date information on nanobiochar’s role in environmental remediation and insights into different mechanisms involved in the pollutant removal. Although, nanobiochar application is increasing, the associated drawbacks to the soil ecosystem have not received enough research attention. Therefore, further research is warranted to evaluate the potential environmental risks of nanobiochar before large scale application. Graphical Abstract

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3