Biochar addition to tea garden soils: effects on tea fluoride uptake and accumulation

Author:

Wang Haoyang,Hu Teng,Wang Minghan,Liang Yunshan,Shen Chengwen,Xu Huaqin,Zhou Yaoyu,Liu Zhonghua

Abstract

AbstractLong-term consumption of tea with high fluoride (F) content has a potential threat to human health. The application of different amounts of biochar to reduce F accumulation in tea leaves has been little studied. In this study, a pot experiment was conducted to investigate the effect of biochar amounts (0, 0.5%, 2.5%, 5.0%, 8.0%, and 10.0%, w/w) on tea F content during the tea plant growth. Changes in tea quality, soil F fraction, and soil properties caused by biochar and the relationship with tea F accumulation were also considered. The results showed that the application of biochar amendment significantly reduced water-soluble F contents in tea leaves compared to CK (without biochar), especially in the 8.0% treatment (72.55%). Overall, biochar contributed to improving tea polyphenols and caffeine, but had no significant impact on free amino acids and water leachate. Compared with CK, 5.0–10.0% biochar significantly increased soil water-soluble F content due to the substitution of F with OH under high pH. Additionally, biochar applied to tea garden soil was effective in decreasing the soil exchangeable aluminum (Ex-Al) content (46.37–91.90%) and increasing the soil exchangeable calcium (Ca2+) content (12.02–129.74%) compared to CK, and correlation analysis showed that this may help reduce F enrichment of tea leaves. In general, the application of 5.0–8.0% biochar can be suggested as an optimal application dose to decrease tea F contents while simultaneously improving tea quality. Graphical Abstract

Funder

Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone Construction Project

Natural Science Foundation of Hunan Province

Special Project for the Construction of Modern Agricultural Industrial Technology Systems in Hunan Province

Hunan Agricultural University 1515 Talent Project

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3