The effect of biochar on mycorrhizal fungi mediated nutrient uptake by coconut (Cocos nucifera L.) seedlings grown on a Sandy Regosol

Author:

Nirukshan Gertrude ScynthyaORCID,Ranasinghe SanathanieORCID,Sleutel StevenORCID

Abstract

AbstractBiochar amendment of soil may ameliorate inherently infertile soils, such as in the typical coconut (Cocos nucifera L.) growth areas along tropical coasts, where, moreover, temporary moisture stress commonly occurs. We conducted a pot experiment to evaluate the effects of biochar soil amendment (1% w/w) produced from Gliricidia sepium stems (BC-Gly) and rice husks (BC-RiH) on the growth of coconut seedlings and on N and P uptake mediated by mycorrhizae under wet or dry conditions in a Sandy Regosol. The pots were divided into root and hyphal zones by a nylon mesh, where 15N labelled N and P nutrients were only provided in the hyphal zone. Under wet conditions, biochar application did not affect plant growth, while under dry conditions, the BC-Gly increased root and plant growth similar to that under wet conditions. BC-Gly increased the acidic pH of the soil to a neutral level, and the microbial community shifted towards a higher fungal abundance. The P accumulated (Pacc) in roots was higher with BC-Gly and BC-RiH under dry and wet conditions, respectively. Pacc weakly correlated with the abundance of arbuscular mycorrhizal fungi (AMF) in the hyphal zone. With BC-Gly roots showed lower N derived from fertilizer. We conclude that biochar application has no impact on crop growth under wet conditions, while under dry conditions, BC-Gly stimulates crop growth and P uptake, probably through liming induced P availability but also possibly by some enhancement of AMF growth. The shift in the fungal-oriented microbial community and reduced plant fertilizer N uptake suggested that BC-Gly acted as an additional N source. Graphical Abstract

Funder

Universiteit Gent

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3