Synthesis of Mg–K-biochar bimetallic catalyst and its evaluation of glucose isomerization

Author:

Kang Xiheng,You Zi,Peng Jian,Ragauskas Arthur J.ORCID,Pang Jingdong,Zhao Peitao,Yin Yongjun,Song Xueping

Abstract

AbstractHighly efficient isomerization of glucose to fructose is essential for valorizing cellulose fraction of biomass to value-added chemicals. This work  provided an innovative method for preparing Mg-biochar and Mg–K-biochar catalysts by impregnating either MgCl2 alone or in combination with different K compounds (Ding et al. in Bioresour Technol 341:125835, 2021, https://doi.org/10.1016/j.biortech.2021.125835 and KHCO3) on cellulose-derived biochar, followed by hydrothermal carbonization and pyrolysis. Single active substance MgO existing in the 10Mg–C could give better catalytic effect on glucose isomerization than the synergy of MgO and KCl crystalline material present in 10Mg–KCl–C. But the catalytic effect of 10Mg–C was decreased when the basic site of MgO was overloaded. Compared to other carbon-based metal catalysts, 10Mg–KHCO3–C with 10 wt% MgCl2 loading had  excellent catalytic performance, which gave  a higher fructose yield (36.7%) and selectivity (74.54%), and catalyzed excellent glucose conversion (53.99%) at 100 °C in 30 min. Scanning electron microscope–energy dispersive spectrometer and X-Ray diffraction revealed that the distribution of Mg2+ and K+ in 10Mg–KHCO3–C  was uniform and the catalytic active substances (MgO, KCl and K2CO3) were more than 10Mg–C (only MgO). The synergy effects of MgO and K2CO3 active sites enhanced  the pH of reaction system and  induced H2O ionization to form considerable OH ions, thus easily realizing a deprotonation of glucose and effectively catalyzing the isomerization of glucose. In this study, we developed a highly efficient Mg–K-biochar bimetallic catalyst for glucose isomerization and provided  an efficient method for cellulose valorization. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3