Abstract
AbstractOur world is being increasingly pervaded by intelligent robots with varying degrees of autonomy. To seamlessly integrate themselves in our society, these machines should possess the ability to navigate the complexities of our daily routines even in the absence of a human’s direct input. In other words, we want these robots to understand the intentions of their partners with the purpose of predicting the best way to help them. In this paper, we present the initial iteration of cognitive architecture for social perception and engagement in robots: a symbolic cognitive architecture that uses qualitative spatial reasoning to anticipate the pursued goal of another agent and to calculate the best collaborative behavior. This is performed through an ensemble of parallel processes that model a low-level action recognition and a high-level goal understanding, both of which are formally verified. We have tested this architecture in a simulated kitchen environment and the results we have collected show that the robot is able to both recognize an ongoing goal and to properly collaborate towards its achievement. This demonstrates a new use of qualitative spatial relations applied to the problem of intention reading in the domain of human–robot interaction.
Funder
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献