Real-Time Estimation of Drivers’ Trust in Automated Driving Systems

Author:

Azevedo-Sa HebertORCID,Jayaraman Suresh KumaarORCID,Esterwood Connor T.ORCID,Yang X. JessieORCID,Robert Lionel P.ORCID,Tilbury Dawn M.ORCID

Abstract

AbstractTrust miscalibration issues, represented by undertrust and overtrust, hinder the interaction between drivers and self-driving vehicles. A modern challenge for automotive engineers is to avoid these trust miscalibration issues through the development of techniques for measuring drivers’ trust in the automated driving system during real-time applications execution. One possible approach for measuring trust is through modeling its dynamics and subsequently applying classical state estimation methods. This paper proposes a framework for modeling the dynamics of drivers’ trust in automated driving systems and also for estimating these varying trust levels. The estimation method integrates sensed behaviors (from the driver) through a Kalman filter-based approach. The sensed behaviors include eye-tracking signals, the usage time of the system, and drivers’ performance on a non-driving-related task. We conducted a study ($$n=80$$ n = 80 ) with a simulated SAE level 3 automated driving system, and analyzed the factors that impacted drivers’ trust in the system. Data from the user study were also used for the identification of the trust model parameters. Results show that the proposed approach was successful in computing trust estimates over successive interactions between the driver and the automated driving system. These results encourage the use of strategies for modeling and estimating trust in automated driving systems. Such trust measurement technique paves a path for the design of trust-aware automated driving systems capable of changing their behaviors to control drivers’ trust levels to mitigate both undertrust and overtrust.

Funder

CCDC Ground Vehicle Systems Center

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Human-Computer Interaction,Philosophy,Electrical and Electronic Engineering,Control and Systems Engineering,Social Psychology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3