Robust PCA via Regularized Reaper with a Matrix-Free Proximal Algorithm

Author:

Beinert RobertORCID,Steidl Gabriele

Abstract

AbstractPrincipal component analysis (PCA) is known to be sensitive to outliers, so that various robust PCA variants were proposed in the literature. A recent model, called reaper, aims to find the principal components by solving a convex optimization problem. Usually the number of principal components must be determined in advance and the minimization is performed over symmetric positive semi-definite matrices having the size of the data, although the number of principal components is substantially smaller. This prohibits its use if the dimension of the data is large which is often the case in image processing. In this paper, we propose a regularized version of reaper which enforces the sparsity of the number of principal components by penalizing the nuclear norm of the corresponding orthogonal projector. If only an upper bound on the number of principal components is available, our approach can be combined with the L-curve method to reconstruct the appropriate subspace. Our second contribution is a matrix-free algorithm to find a minimizer of the regularized reaper which is also suited for high-dimensional data. The algorithm couples a primal-dual minimization approach with a thick-restarted Lanczos process. This appears to be the first efficient convex variational method for robust PCA that can handle high-dimensional data. As a side result, we discuss the topic of the bias in robust PCA. Numerical examples demonstrate the performance of our algorithm.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Computer Vision and Pattern Recognition,Condensed Matter Physics,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lagrangian motion magnification with double sparse optical flow decomposition;Frontiers in Applied Mathematics and Statistics;2023-09-14

2. Truncated γ norm-based low-rank and sparse decomposition;Multimedia Tools and Applications;2022-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3