Causal Network Inference for Neural Ensemble Activity
-
Published:2021-01-04
Issue:3
Volume:19
Page:515-527
-
ISSN:1539-2791
-
Container-title:Neuroinformatics
-
language:en
-
Short-container-title:Neuroinform
Abstract
AbstractInteractions among cellular components forming a mesoscopic scale brain network (microcircuit) display characteristic neural dynamics. Analysis of microcircuits provides a system-level understanding of the neurobiology of health and disease. Causal discovery aims to detect causal relationships among variables based on observational data. A key barrier in causal discovery is the high dimensionality of the variable space. A method called Causal Inference for Microcircuits (CAIM) is proposed to reconstruct causal networks from calcium imaging or electrophysiology time series. CAIM combines neural recording, Bayesian network modeling, and neuron clustering. Validation experiments based on simulated data and a real-world reaching task dataset demonstrated that CAIM accurately revealed causal relationships among neural clusters.
Funder
National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,General Neuroscience,Software
Reference55 articles.
1. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. (1998). An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM, 45(6), 891–923. 2. Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nat Rev Neurosci, 7(5), 358–366. 3. Barbera, G., Liang, B., Zhang, L., Gerfen, C. R., Culurciello, E., Chen, R., Li, Y., & Lin, D. T. (2016). Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron, 92(1), 202–213. 4. Bar-Joseph, Z., Gitter, A., & Simon, I. (2012). Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet, 13(8), 552–564. 5. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris Jr., F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A. P., el Boustani, S., & Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci, 23(3), 349–398.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|