NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data

Author:

Jiao Jieqing,Heeman Fiona,Dixon Rachael,Wimberley Catriona,Lopes Alves Isadora,Gispert Juan Domingo,Lammertsma Adriaan A.,van Berckel Bart N. M.,da Costa-Luis Casper,Markiewicz Pawel,Cash David M.,Cardoso M Jorge,Ourselin Sebastién,Yaqub Maqsood,Barkhof Frederik

Abstract

AbstractCurrent PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved $$R^2>0.999$$ R 2 > 0.999 correlation with PPET, with absolute difference $$\sim 10^{-2}$$ 10 - 2 for linearised Logan and MRTM2 methods, and $$R^2>0.999999$$ R 2 > 0.999999 correlation with QModeling, with absolute difference $$\sim 10^{-4}$$ 10 - 4 for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ($$R^2=0.96$$ R 2 = 0.96 ), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available (https://github.com/AMYPAD/NiftyPAD), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3