Chiral anomaly induces superconducting baryon crystal

Author:

Evans Geraint W.ORCID,Schmitt AndreasORCID

Abstract

Abstract It was previously shown within chiral perturbation theory that the ground state of QCD in a sufficiently large magnetic field and at nonvanishing, but not too large, baryon chemical potential is a so-called chiral soliton lattice. The crucial ingredient of this observation was the chiral anomaly in the form of a Wess-Zumino-Witten term, which couples the baryon chemical potential to the magnetic field and the gradient of the neutral pion field. It was also shown that the chiral soliton lattice becomes unstable towards charged pion condensation at larger magnetic fields. We point out that this instability bears a striking resemblance to the second critical magnetic field of a type-II superconductor, however with the superconducting phase appearing upon increasing the magnetic field. The resulting phase has a periodically varying charged pion condensate that coexists with a neutral pion supercurrent. We construct this phase analytically in the chiral limit and show that it is energetically preferred. Just like an ordinary type-II superconductor, it exhibits a hexagonal array of magnetic flux tubes, and, due to the chiral anomaly, a spatially oscillating baryon number of the same crystalline structure.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Baryonic vortex phase and magnetic field generation in QCD with isospin and baryon chemical potentials;Journal of High Energy Physics;2024-06-21

2. Non-Abelian chiral soliton lattice in rotating QCD matter: Nambu-Goldstone and excited modes;Journal of High Energy Physics;2024-03-06

3. Domain-wall Skyrmion phase in a rapidly rotating QCD matter;Journal of High Energy Physics;2024-03-04

4. Chiral Soliton Lattice turns into 3D crystal;Journal of High Energy Physics;2024-02-07

5. Anomalous strangeness transport;Journal of High Energy Physics;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3