Abstract
Abstract
We propose the Kazakov-Migdal model on graphs and show that, when the parameters of this model are appropriately tuned, the partition function is represented by the unitary matrix integral of an extended Ihara zeta function, which has a series expansion by all non-collapsing Wilson loops with their lengths as weights. The partition function of the model is expressed in two different ways according to the order of integration. A specific unitary matrix integral can be performed at any finite N thanks to this duality. We exactly evaluate the partition function of the parameter-tuned Kazakov-Migdal model on an arbitrary graph in the large N limit and show that it is expressed by the infinite product of the Ihara zeta functions of the graph.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献