Kazakov-Migdal model on the graph and Ihara zeta function

Author:

Matsuura SoORCID,Ohta Kazutoshi

Abstract

Abstract We propose the Kazakov-Migdal model on graphs and show that, when the parameters of this model are appropriately tuned, the partition function is represented by the unitary matrix integral of an extended Ihara zeta function, which has a series expansion by all non-collapsing Wilson loops with their lengths as weights. The partition function of the model is expressed in two different ways according to the order of integration. A specific unitary matrix integral can be performed at any finite N thanks to this duality. We exactly evaluate the partition function of the parameter-tuned Kazakov-Migdal model on an arbitrary graph in the large N limit and show that it is expressed by the infinite product of the Ihara zeta functions of the graph.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phases and Duality in the Fundamental Kazakov–Migdal Model on the Graph;Progress of Theoretical and Experimental Physics;2024-07-18

2. The conformal manifold of S-folds in string theory;Journal of High Energy Physics;2024-03-29

3. Equivalence of lattice operators and graph matrices;Progress of Theoretical and Experimental Physics;2024-01-19

4. Gross-Witten-Wadia phase transition in induced QCD on the graph;Physical Review D;2023-09-18

5. Graph zeta functions and Wilson loops in a Kazakov–Migdal model;Progress of Theoretical and Experimental Physics;2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3