Abstract
Abstract
We study the self-gravitating Abrikosov vortex in curved space with and with-out a (negative) cosmological constant, considering both singular and non-singular solutions with an eye to hairy black holes. In the asymptotically flat case, we find that non-singular vortices round off the singularity of the point particle’s metric in 3 dimensions, whereas singular solutions consist of vortices holding a conical singularity at their core. There are no black hole vortex solutions. In the asymptotically AdS case, in addition to these solutions there exist singular solutions containing a BTZ black hole, but they are always hairless. So we find that in contrast with 4-dimensional ’t Hooft-Polyakov monopoles, which can be regarded as their higher-dimensional analogues, Abrikosov vortices cannot hold a black hole at their core. We also describe the implications of these results in the context of AdS/CFT and propose an interpretation for their CFT dual along the lines of the holographic superconductor.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference48 articles.
1. A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [Zh. Eksp. Teor. Fiz. 32 (1957) 1442] [INSPIRE].
2. H.B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61 (1973) 45.
3. G. ’t Hooft, Magnetic monopoles in unified gauge theorie, Nucl. Phys. B 79 (1974) 276.
4. A.M. Polyakov, Particle spectrum in quantum field theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].
5. K.-M. Lee, V.P. Nair and E.J. Weinberg, Black holes in magnetic monopoles, Phys. Rev. D 45 (1992) 2751 [hep-th/9112008] [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献