Author:
Faustmann Markus,Melenk Jens Markus,Parvizi Maryam
Abstract
AbstractWe consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak–MacCamy coupling, the symmetric coupling, and the Johnson–Nédélec coupling. For each coupling, we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent $$\mathcal {H}$$
H
-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference37 articles.
1. Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51(4), 399–419 (2013)
2. Angleitner, N., Faustmann, M., Melenk, J.M.: Approximating inverse FEM matrices on non-uniform meshes with $${\cal{H}}$$-matrices. Calcolo 58:31(3), 1–36 (2021)
3. Bebendorf, M.: Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients. Math. Comp. 74(251), 1179–1199 (2005)
4. Bebendorf, M.: Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3), 225–247 (2005)
5. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献