Mosco Convergence of Gradient Forms with Non-Convex Interaction Potential

Author:

Grothaus Martin,Wittmann Simon

Abstract

AbstractThis article provides a new approach to address Mosco convergence of gradient-type Dirichlet forms, $${\mathcal {E}}^N$$ E N on $$L^2(E,\mu _N)$$ L 2 ( E , μ N ) for $$N\in {\mathbb {N}}$$ N N , in the framework of converging Hilbert spaces by K. Kuwae and T. Shioya. The basic assumption is weak measure convergence of the family $${(\mu _N)}_{N}$$ ( μ N ) N on the state space E—either a separable Hilbert space or a locally convex topological vector space. Apart from that, the conditions on $${(\mu _N)}_{N}$$ ( μ N ) N try to impose as little restrictions as possible. The problem has fully been solved if the family $${(\mu _N)}_{N}$$ ( μ N ) N contain only log-concave measures, due to Ambrosio et al. (Probab Theory Relat. Fields 145:517–564, 2009). However, for a large class of convergence problems the assumption of log-concavity fails. The article suggests a way to overcome this hindrance, as it presents a new approach. Combining the theory of Dirichlet forms with methods from numerical analysis we find abstract criteria for Mosco convergence of standard gradient forms with varying reference measures. These include cases in which the measures are not log-concave. To demonstrate the accessibility of our abstract theory we discuss a first application, generalizing an approximation result by Bounebache and Zambotti (J Theor Probab 27:168–201, 2014).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3