Signed Barcodes for Multi-parameter Persistence via Rank Decompositions and Rank-Exact Resolutions

Author:

Botnan Magnus Bakke,Oppermann Steffen,Oudot Steve

Abstract

AbstractIn this paper, we introduce the signed barcode, a new visual representation of the global structure of the rank invariant of a multi-parameter persistence module or, more generally, of a poset representation. Like its unsigned counterpart in one-parameter persistence, the signed barcode decomposes the rank invariant as a $${\mathbb {Z}}$$ Z -linear combination of rank invariants of indicator modules supported on segments in the poset. We develop the theory behind these decompositions, both for the usual rank invariant and for its generalizations, showing under what conditions they exist and are unique. We also show that, like its unsigned counterpart, the signed barcode reflects in part the algebraic structure of the module: specifically, it derives from the terms in the minimal rank-exact resolution of the module, i.e., its minimal projective resolution relative to the class of short exact sequences on which the rank invariant is additive. To complete the picture, we show some experimental results that illustrate the contribution of the signed barcode in the exploration of multi-parameter persistence modules.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier. Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18, 2017.

2. T. Aoki, E. G. Escolar, and S. Tada. Summand-injectivity of interval covers and monotonicity of interval resolution global dimensions. arXiv preprint[SPACE]arXiv:2308.14979, 2023.

3. H. Asashiba. Relative koszul coresolutions and relative betti numbers. arXiv preprint[SPACE]arXiv:2307.06559, 2023.

4. H. Asashiba, E. G. Escolar, K. Nakashima, and M. Yoshiwaki. Approximation by interval-decomposables and interval resolutions of persistence modules. Journal of Pure and Applied Algebra, 227(10):107397, 2023.

5. H. Asashiba, E. G. Escolar, K. Nakashima, and M. Yoshiwaki. On approximation of 2d persistence modules by interval-decomposables. Journal of Computational Algebra, 6:100007, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3