Stable Spectral Methods for Time-Dependent Problems and the Preservation of Structure

Author:

Iserles Arieh

Abstract

AbstractThis paper is concerned with orthonormal systems in real intervals, given with zero Dirichlet boundary conditions. More specifically, our interest is in systems with a skew-symmetric differentiation matrix (this excludes orthonormal polynomials). We consider a simple construction of such systems and pursue its ramifications. In general, given any $$\text {C}^1(a,b)$$ C 1 ( a , b ) weight function such that $$w(a)=w(b)=0$$ w ( a ) = w ( b ) = 0 , we can generate an orthonormal system with a skew-symmetric differentiation matrix. Except for the case $$a=-\infty $$ a = - , $$b=+\infty $$ b = + , only few powers of that matrix are bounded and we establish a connection between properties of the weight function and boundedness. In particular, we examine in detail two weight functions: the Laguerre weight function $$x^\alpha \textrm{e}^{-x}$$ x α e - x for $$x>0$$ x > 0 and $$\alpha >0$$ α > 0 and the ultraspherical weight function $$(1-x^2)^\alpha $$ ( 1 - x 2 ) α , $$x\in (-1,1)$$ x ( - 1 , 1 ) , $$\alpha >0$$ α > 0 , and establish their properties. Both weights share a most welcome feature of separability, which allows for fast computation. The quality of approximation is highly sensitive to the choice of $$\alpha $$ α , and we discuss how to choose optimally this parameter, depending on the number of zero boundary conditions.

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Philipp Bader, Arieh Iserles, Karolina Kropielnicka, and Pranav Singh. Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math., 14(4):689–720, 2014.

2. Sergio Blanes and Vasile Gradinaru. High order efficient splittings for the semiclassical time-dependent Schrödinger equation. J. Comput. Phys., 405:109157, 13, 2020.

3. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods. Scientific Computation. Springer-Verlag, Berlin, 2006.

4. Diego Caratelli, Ernesto Palini, and Paolo Emilio Ricci. Finite dimensional applications of the Dunford-Taylor integral. Bull. TICMI, 25(1):63–75, 2021.

5. T. S. Chihara. An Introduction to Orthogonal Polynomials. Mathematics and its Applications, Vol. 13. Gordon and Breach Science Publishers, New York-London-Paris, 1978.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3