Sigmoid Type Neuromorphic Activation Function Based on Saturable Absorption Behavior of Graphene/PMMA Composite for Intensity Modulation of Surface Plasmon Polariton Signals

Author:

Tari HamedORCID,Bile Alessandro,Moratti Francesca,Fazio Eugenio

Abstract

AbstractFor an optical technology to be feasible as a substitution of electronics one for neuromorphic applications, it is required the waveguides in which are capable of confining and directing light signals in much smaller dimensions than the operating wavelength of the light, i.e., subwavelength optical components must be realized. Hybrid nature of surface plasmon polariton addresses the problem with the diffraction limit of regular photonic components. Here, the authors present a two-dimensional numerical simulation of a passive photonic element based on a saturable absorber material as a hardware base analogy to the biological activation function existed at the cell body of neurons. They demonstrate that at telecom wavelengths, a highly confined SPP mode can be modulated in a nonlinear fashion by considering the carrier dynamics of graphene/PMMA polymeric composite as a two-level system. The hardware base sigmoid type nonlinear activation function derived from this study further characterized; and the parameters which appeared to be effective on the performance of the structure, such as saturation intensity, modulation depth, and thickness of the synaptic part as a Fabry–Pérot structure, have been studied.

Funder

Sapienza Università di Roma

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Biophysics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3