Algal blooms as a reactive dynamic response to seasonal perturbation in an experimental system

Author:

Fryxell John M.,Betini Gustavo S.

Abstract

AbstractAlgal blooms are typical of many aquatic freshwater ecosystems in seasonal environments. Such blooms could derive from transient reactive dynamics of algae and limiting nutrients following seasonal perturbation events. Linking parameter estimates derived from previously published lab experiments with empirical estimates of algal density dependence, we modeled dynamic interactions between nutrients and the green algal species Chlorella vulgaris and tested model predictions in a dozen 140 L mesocosms supplied with bi-weekly inputs of liquid fertilizer. Consistent with the reactive nutrient-driven model, Chlorella populations exhibited an initial surge in abundance over the first month followed by collapse as they rapidly converged on stable equilibria. The reactive model suggests that the magnitude of transient blooms is positively related to the augmentation of nutrients and depression of algae over the winter period. The magnitude of both algal peaks and equilibrium abundance was positively related to fertilizer loading, as predicted by the reactive model. Our results suggest that transient reactive responses to climate-driven perturbation events can be an important contributor to seasonal algal blooms observed in many temperate freshwater ecosystems. Controlled experimental studies such as ours may be helpful in understanding and potentially mediating the impact of fertilizer run-off on freshwater systems in temperate agricultural landscapes.

Funder

NSERC Discovery

Canada First Research Excellence Fund

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3