Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates

Author:

Liu Mengting,Lu Minhua,Kim Sharon Y.,Lee Hyun Ju,Duffy Ben A.,Yuan Shiyu,Chai Yaqiong,Cole James H.,Wu Xiaotong,Toga Arthur W.,Jahanshad Neda,Gano Dawn,Barkovich Anthony James,Xu Duan,Kim HosungORCID

Abstract

Abstract Objectives Dramatic brain morphological changes occur throughout the third trimester of gestation. In this study, we investigated whether the predicted brain age (PBA) derived from graph convolutional network (GCN) that accounts for cortical morphometrics in third trimester is associated with postnatal abnormalities and neurodevelopmental outcome. Methods In total, 577 T1 MRI scans of preterm neonates from two different datasets were analyzed; the NEOCIVET pipeline generated cortical surfaces and morphological features, which were then fed to the GCN to predict brain age. The brain age index (BAI; PBA minus chronological age) was used to determine the relationships among preterm birth (i.e., birthweight and birth age), perinatal brain injuries, postnatal events/clinical conditions, BAI at postnatal scan, and neurodevelopmental scores at 30 months. Results Brain morphology and GCN-based age prediction of preterm neonates without brain lesions (mean absolute error [MAE]: 0.96 weeks) outperformed conventional machine learning methods using no topological information. Structural equation models (SEM) showed that BAI mediated the influence of preterm birth and postnatal clinical factors, but not perinatal brain injuries, on neurodevelopmental outcome at 30 months of age. Conclusions Brain morphology may be clinically meaningful in measuring brain age, as it relates to postnatal factors, and predicting neurodevelopmental outcome. Clinical relevance statement Understanding the neurodevelopmental trajectory of preterm neonates through the prediction of brain age using a graph convolutional neural network may allow for earlier detection of potential developmental abnormalities and improved interventions, consequently enhancing the prognosis and quality of life in this vulnerable population. Key Points •Brain age in preterm neonates predicted using a graph convolutional network with brain morphological changes mediates the pre-scan risk factors and post-scan neurodevelopmental outcomes. •Predicted brain age oriented from conventional deep learning approaches, which indicates the neurodevelopmental status in neonates, shows a lack of sensitivity to perinatal risk factors and predicting neurodevelopmental outcomes. •The new brain age index based on brain morphology and graph convolutional network enhances the accuracy and clinical interpretation of predicted brain age for neonates.

Funder

University of Southern California

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3