Reliability of pediatric ventricular function analysis by short-axis “single-cycle-stack-advance” single-shot compressed-sensing cines in minimal breath-hold time

Author:

Hatipoglu SuzanORCID,Gatehouse Peter,Krupickova Sylvia,Banya Winston,Daubeney Piers,Almogheer Batool,Izgi Cemil,Weale Peter,Hayes Carmel,Firmin David,Pennell Dudley J.

Abstract

Abstract Objectives Cardiovascular magnetic resonance (CMR) cine imaging by compressed sensing (CS) is promising for patients unable to tolerate long breath-holding. However, the need for a steady-state free-precession (SSFP) preparation cardiac cycle for each slice extends the breath-hold duration (e.g. for 10 slices, 20 cardiac cycles) to an impractical length. We investigated a method reducing breath-hold duration by half and assessed its reliability for biventricular volume analysis in a pediatric population. Methods Fifty-five consecutive pediatric patients (median age 12 years, range 7–17) referred for assessment of congenital heart disease or cardiomyopathy were included. Conventional multiple breath-hold SSFP short-axis (SAX) stack cines served as the reference. Real-time CS SSFP cines were applied without the steady-state preparation cycle preceding each SAX cine slice, accepting the limitation of omitting late diastole. The total acquisition time was 1 RR interval/slice. Volumetric analysis was performed for conventional and “single-cycle-stack-advance” (SCSA) cine stacks. Results Bland–Altman analyses [bias (limits of agreement)] showed good agreement in left ventricular (LV) end-diastolic volume (EDV) [3.6 mL (− 5.8, 12.9)], LV end-systolic volume (ESV) [1.3 mL (− 6.0, 8.6)], LV ejection fraction (EF) [0.1% (− 4.9, 5.1)], right ventricular (RV) EDV [3.5 mL (− 3.34, 10.0)], RV ESV [− 0.23 mL (− 7.4, 6.9)], and RV EF [1.70%, (− 3.7, 7.1)] with a trend toward underestimating LV and RV EDVs with the SCSA method. Image quality was comparable for both methods (p = 0.37). Conclusions LV and RV volumetric parameters agreed well between the SCSA and the conventional sequences. The SCSA method halves the breath-hold duration of the commercially available CS sequence and is a reliable alternative for volumetric analysis in a pediatric population. Key Points • Compressed sensing is a promising accelerated cardiovascular magnetic resonance imaging technique. • We omitted the steady-state preparation cardiac cycle preceding each cine slice in compressed sensing and achieved an acquisition speed of 1 RR interval/slice. • This modification called “single-cycle-stack-advance” enabled the acquisition of an entire short-axis cine stack in a single short breath hold. • When tested in a pediatric patient group, the left and right ventricular volumetric parameters agreed well between the “single-cycle-stack-advance” and the conventional sequences.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3