Deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI

Author:

Thimansson ErikORCID,Bengtsson J.,Baubeta E.,Engman J.,Flondell-Sité D.,Bjartell A.,Zackrisson S.

Abstract

Abstract Objectives Prostate volume (PV) in combination with prostate specific antigen (PSA) yields PSA density which is an increasingly important biomarker. Calculating PV from MRI is a time-consuming, radiologist-dependent task. The aim of this study was to assess whether a deep learning algorithm can replace PI-RADS 2.1 based ellipsoid formula (EF) for calculating PV. Methods Eight different measures of PV were retrospectively collected for each of 124 patients who underwent radical prostatectomy and preoperative MRI of the prostate (multicenter and multi-scanner MRI’s 1.5 and 3 T). Agreement between volumes obtained from the deep learning algorithm (PVDL) and ellipsoid formula by two radiologists (PVEF1 and PVEF2) was evaluated against the reference standard PV obtained by manual planimetry by an expert radiologist (PVMPE). A sensitivity analysis was performed using a prostatectomy specimen as the reference standard. Inter-reader agreement was evaluated between the radiologists using the ellipsoid formula and between the expert and inexperienced radiologists performing manual planimetry. Results PVDL showed better agreement and precision than PVEF1 and PVEF2 using the reference standard PVMPE (mean difference [95% limits of agreement] PVDL: −0.33 [−10.80; 10.14], PVEF1: −3.83 [−19.55; 11.89], PVEF2: −3.05 [−18.55; 12.45]) or the PV determined based on specimen weight (PVDL: −4.22 [−22.52; 14.07], PVEF1: −7.89 [−30.50; 14.73], PVEF2: −6.97 [−30.13; 16.18]). Inter-reader agreement was excellent between the two experienced radiologists using the ellipsoid formula and was good between expert and inexperienced radiologists performing manual planimetry. Conclusion Deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI. Key Points • A commercially available deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI. • The deep-learning algorithm was previously untrained on this heterogenous multicenter day-to-day practice MRI data set.

Funder

Medicinska Fakulteten, Lunds Universitet

Region Skåne

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3