Breast cancer screening with digital breast tomosynthesis: comparison of different reading strategies implementing artificial intelligence

Author:

Dahlblom VictorORCID,Dustler Magnus,Tingberg Anders,Zackrisson Sophia

Abstract

Abstract Objectives Digital breast tomosynthesis (DBT) can detect more cancers than the current standard breast screening method, digital mammography (DM); however, it can substantially increase the reading workload and thus hinder implementation in screening. Artificial intelligence (AI) might be a solution. The aim of this study was to retrospectively test different ways of using AI in a screening workflow. Methods An AI system was used to analyse 14,772 double-read single-view DBT examinations from a screening trial with paired DM double reading. Three scenarios were studied: if AI can identify normal cases that can be excluded from human reading; if AI can replace the second reader; if AI can replace both readers. The number of detected cancers and false positives was compared with DM or DBT double reading. Results By excluding normal cases and only reading 50.5% (7460/14,772) of all examinations, 95% (121/127) of the DBT double reading detected cancers could be detected. Compared to DM screening, 27% (26/95) more cancers could be detected (p < 0.001) while keeping recall rates at the same level. With AI replacing the second reader, 95% (120/127) of the DBT double reading detected cancers could be detected—26% (25/95) more than DM screening (p < 0.001)—while increasing recall rates by 53%. AI alone with DBT has a sensitivity similar to DM double reading (p = 0.689). Conclusion AI can open up possibilities for implementing DBT screening and detecting more cancers with the total reading workload unchanged. Considering the potential legal and psychological implications, replacing the second reader with AI would probably be most the feasible approach. Key Points Breast cancer screening with digital breast tomosynthesis and artificial intelligence can detect more cancers than mammography screening without increasing screen-reading workload. Artificial intelligence can either exclude low-risk cases from double reading or replace the second reader. Retrospective study based on paired mammography and digital breast tomosynthesis screening data.

Funder

Governmental Funding for Clinical Research

Cancerfonden

Allmänna Sjukhusets i Malmö Stiftelse för Bekämpande av Cancer

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3