P-Alert earthquake early warning system: case study of the 2022 Chishang earthquake at Taitung, Taiwan

Author:

Yang Benjamin M.,Mittal HimanshuORCID,Wu Yih-Min

Abstract

AbstractA series of earthquakes that struck Taiwan's southern Longitudinal Valley on September 17 and 18, 2022 severely damaged several buildings in Taitung and Hualien. The Chishang earthquake, which had a magnitude of ML 6.8 and a large foreshock with a magnitude of ML 6.6 the day before, was the mainshock in this sequence. The strongest intensity reported in the epicentral region during this earthquake sequence, which was 6 + , is the highest ever recorded since the Central Weather Bureau (CWB, renamed as the Central Weather Administration since September 15, 2023) revised its seismic intensity scale. National Taiwan University (NTU) has operated a low-cost earthquake early warning (EEW) system known as the P-Alert for a decade. In this study, we demonstrate the performance of the P-Alert network during the 2022 Chishang earthquake and the largest foreshock. The P-Alert network plotted shake maps during these earthquakes that displayed various values within 5 min. The high shaking areas on these maps were in good agreement with observed damages during this earthquake, providing valuable insights into rupture directivity, a crucial component of earthquake engineering. Individual P-Alert stations acted as on-site EEW systems and provided a lead time of 3–10 s within the blind zone of CWB. For the ML 6.8 mainshock, there was a lead time of at least 5 s, even up to 10 s, demonstrating their effectiveness in the blind zone. The P-Alert regional EEW system provided the first report about 9 s and 7 s after the mainshock and the largest foreshock occurrence, respectively, with estimated magnitudes of 5.74 and 5.67. The CWB system estimated magnitudes of 6.72 and 6.16 in the first report, respectively, about 7 s and 9 s after the earthquake occurrence. The timeliness of the two systems were not significantly different. Despite the effectiveness of the P-Alert network, data loss due to connection interruptions prompted us to develop a new compact data logger for improved data availability.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3