Abstract
AbstractIn this second part of a two-part article, we present spacecraft parachute structural mechanics computations with the T-splines computational method introduced in the first part. The method and its implementation, which was also given in the first part, are for computations where structures with different parametric dimensions are connected with continuity and smoothness. The basis functions of the method were derived in the context of connecting structures with 2D and 1D parametric dimensions. In the first part, the 2D structure was referred to as “membrane” and the 1D structure as “cable.” The method and its implementation, however, are certainly applicable also to other 2D–1D cases, and the test computations presented in the first part included shell–cable structures. Similarly, the spacecraft parachute computations presented here are with both the membrane and shell models of the parachute canopy fabric. The computer model used in the computations is for a subscale, wind-tunnel version of the Disk–Gap–Band parachute. The computations demonstrate the effectiveness of the method in 2D–1D structural mechanics computation of spacecraft parachutes.
Funder
Japan Society for the Promotion of Science
Core Research for Evolutional Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献