Unstructured surface mesh smoothing method based on deep reinforcement learning

Author:

Wang Nianhua,Zhang Laiping,Deng Xiaogang

Abstract

AbstractIn numerical simulations such as computational fluid dynamics simulations or finite element analyses, mesh quality affects simulation accuracy directly and significantly. Smoothing is one of the most widely adopted methods to improve unstructured mesh quality in mesh generation practices. Compared with the optimization-based smoothing method, heuristic smoothing methods are efficient but yield lower mesh quality. The balance between smoothing efficiency and mesh quality has been pursued in previous studies. In this paper, we propose a new smoothing method that combines the advantages of the heuristic Laplacian method and the optimization-based method based on the deep reinforcement learning method under the Deep Deterministic Policy Gradient framework. Within the framework, the actor artificial neural network predicts the optimal position of each interior free node with its surrounding ring nodes. At the same time, a critic-network is established and takes the mesh quality as input and outputs the reward of the action taken by the actor-network. Training of the networks will maximize the cumulative long-term reward, which ends up maximizing the mesh quality. Training and validation of the proposed method are presented both on 2-dimensional triangular meshes and 3-dimensional surface meshes, which demonstrates the efficiency and mesh quality of the proposed method. Finally, numerical simulations on perturbed meshes and smoothed meshes are carried out and compared which prove the influence of mesh quality on the simulation accuracy.

Funder

National Key Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3