Abstract
AbstractWe propose the truncated nonsmooth Newton multigrid method (TNNMG) as a solver for the spatial problems of the small-strain brittle-fracture phase-field equations. TNNMG is a nonsmooth multigrid method that can solve biconvex, block-separably nonsmooth minimization problems with linear time complexity. It exploits the variational structure inherent in the problem, and handles the pointwise irreversibility constraint on the damage variable directly, without regularization or the introduction of a local history field. In the paper we introduce the method and show how it can be applied to several established models of phase-field brittle fracture. We then prove convergence of the solver to a solution of the nonsmooth Euler–Lagrange equations of the spatial problem for any load and initial iterate. On the way, we show several crucial convexity and regularity properties of the models considered here. Numerical comparisons to an operator-splitting algorithm show a considerable speed increase, without loss of robustness.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献