Author:
Jänicke Ralf,Larsson Fredrik,Runesson Kenneth
Abstract
AbstractNumerical model reduction is exploited for computational homogenization of the model problem of a poroelastic medium under transient conditions. It is assumed that the displacement and pore pressure fields possess macro-scale and sub-scale (fluctuation) parts. A linearly independent reduced basis is constructed for the sub-scale pressure field using POD. The corresponding reduced basis for the displacement field is constructed in the spirit of the NTFA strategy. Evolution equations that define an apparent poro-viscoelastic macro-scale model are obtained from the continuity equation pertinent to the RVE. The present model represents an extension of models available in literature in the sense that the pressure gradient is allowed to have a non-zero macro-scale component in the nested $$\hbox {FE}^2$$FE2 setting. The numerical results show excellent agreement between the results from numerical model reduction and direct numerical simulation. It was also shown that even 3D RVEs give tractable solution times for full-fledged $$\hbox {FE}^2$$FE2 computations.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献