Modeling and simulation of chemo-elasto-plastically coupled battery active particles

Author:

Schoof RaphaelORCID,Niermann JohannesORCID,Dyck AlexanderORCID,Böhlke ThomasORCID,Dörfler WillyORCID

Abstract

AbstractAs an anode material for lithium-ion batteries, amorphous silicon offers a significantly higher energy density than the graphite anodes currently used. Alloying reactions of lithium and silicon, however, induce large deformation and lead to volume changes up to 300%. We formulate a thermodynamically consistent continuum model for the chemo-elasto-plastic diffusion-deformation behavior of amorphous silicon and it’s alloy with lithium based on finite deformations. In this paper, two plasticity theories, i.e. a rate-independent theory with linear isotropic hardening and a rate-dependent one, are formulated to allow the evolution of plastic deformations and reduce occurring stresses. Using modern numerical techniques, such as higher order finite element methods as well as efficient space and time adaptive solution algorithms, the diffusion-deformation behavior resulting from both theories is compared. In order to further increase the computational efficiency, an automatic differentiation scheme is used, allowing for a significant speed up in assembling time as compared to an algorithmic linearization for the global finite element Newton scheme. Both plastic approaches lead to a more heterogeneous concentration distribution and to a change to tensile tangential Cauchy stresses at the particle surface at the end of one charging cycle. Different parameter studies show how an amplification of the plastic deformation is affected. Interestingly, an elliptical particle shows only plastic deformation at the smaller half axis. With the demonstrated efficiency of the applied methods, results after five charging cycles are also discussed and can provide indications for the performance of lithium-ion batteries in long term use.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3