From Emerson-Lei automata to deterministic, limit-deterministic or good-for-MDP automata

Author:

John TobiasORCID,Jantsch SimonORCID,Baier ChristelORCID,Klüppelholz SaschaORCID

Abstract

AbstractThe topic of this paper is the determinization problem of $$\omega $$ ω -automata under the transition-based Emerson-Lei acceptance (called TELA), which generalizes all standard acceptance conditions and is defined using positive Boolean formulas. Such automata can be determinized by first constructing an equivalent generalized Büchi automaton (GBA), which is later determinized. The problem of constructing an equivalent GBA is considered in detail, and three new approaches of solving it are proposed. Furthermore, a new determinization construction is introduced which determinizes several GBA separately and combines them using a product construction. An experimental evaluation shows that the product approach is competitive when compared with state-of-the-art determinization procedures. The second part of the paper studies limit-determinization of TELA and we show that this can be done with a single-exponential blow-up, in contrast to the known double-exponential lower-bound for determinization. Finally, one version of the limit-determinization procedure yields good-for-MDP automata which can be used for quantitative probabilistic model checking.

Funder

Deutsche Forschungsgemeinschaft

Germany’s Excellence Strategy

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3