Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint

Author:

Wang YafengORCID,Sigmund Ole

Abstract

AbstractA multi-material active structure is a mechanical system made of passive and active materials with the ability to alter its configuration, form, or properties in response to changes in the environment. Active structures have been investigated to design lightweight structures and structures with the ability to “smartly” alter their shapes and/or internal forces. Recently, the potential of active structures to reduce environmental impact, i.e., reduce energy consumption and greenhouse gas (GHG) emissions, has been investigated. It has been verified that, compared to passive structures, active structures can not only use less material but also consume less energy and cause less GHG emissions during their service life, and thus have a significant potential to be applied as environment-friendly mechanical structures. This study aims to develop a general topology optimization (TO) approach to design novel multi-material active structural systems to reduce environmental impact. The approach is based on the density-based TO scheme. Passive and active materials are considered in the TO process and are required to be optimally distributed according to the optimization objective and constraints. The energy consumption or GHG emissions caused by the structure during its service life are treated as the objective function to be minimized under multiple displacement requirements. Typical examples are carried out to verify the developed approach. Results show that the topology optimized active structures may not only achieve significant weight savings but also less energy consumption and GHG emissions compared to equivalent topology optimized passive structures, which indicates that the developed approach has the potential to be applied to design novel structural systems with lighter weight, larger span, and with less environmental impact compared to conventional passive structural systems.

Funder

H2020 Marie Skłodowska-Curie Actions

Villum Fonden

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3