Efficient aeroelastic wing optimization through a compact aerofoil decomposition approach

Author:

Poole Daniel J.ORCID,Allen Christian B.,Rendall Thomas C. S.

Abstract

AbstractEfficient optimization of an aeroelastic wing is presented through multi-disciplinary analysis using low-dimensional modal design variables. Much work in wing optimization has concentrated on high-fidelity surface control, therefore utilising often hundreds of design variables. However, whilst fine surface control can be useful, problems can arise such as large disparities in design variable values when planform variables are introduced, slow convergence speeds, and lack of compatibility with global algorithms. Therefore, the focus of this paper is to filter the design space of this problem to reduce the dimensionality and complexity of the problem. Orthogonal geometric design variables are derived in the geometric space via singular value decomposition. Orthogonality of design variables leads to a well-conditioned design space and ensures effective optimizer convergence. These variables are applied in a sectional fashion for fixed planform drag minimization of a flexible transonic wing, using a gradient-based optimizer. Shock-free solutions are demonstrated when optimizing a rigid wing, indicating suitability of the aerofoil modes for sectional-based wing optimization. However, it is shown that these wings have poor performance when subsequently deformed under flight loads, hence optimisation including full aeroelastic performance is performed. Encouragingly, shock-free solutions are again computed. Loading is shifted outboard, leading to increased tip deflection. Monotonic improvement in the objective function (drag) with increase in dimensionality is also proven. Furthermore, applying these sectional deformation modes globally across the wing with only 10 design variable leads to a 28% drag reduction, which is within 7 drag counts of when the modes are applied locally through 82 design variables. This therefore opens the possibility of introducing global optimization algorithms to high-fidelity aeroelastic wing optimization.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3