Generating minimal Pareto sets in multi-objective topology optimisation: an application to the wing box structural layout

Author:

Crescenti FabioORCID,Kipouros Timoleon,Munk David J.,Savill Mark A.

Abstract

AbstractMulti-objective topology optimisation problems are often tackled by compromising the cost functions according to the designer’s knowledge. Such an approach however has clear limitations and usually requires information which especially at the preliminary design stage could be unavailable. This paper proposes an alternative multi-objective approach for the generation of minimal Pareto sets in combination with density-based topology optimisation. Optimised solutions are generated integrating a recently revised method for a posteriori articulation of preferences with the Method of Moving Asymptotes. The methodology is first tested on an academic two-dimensional structure and eventually employed to optimise a full-scale aerospace structure with the support of the commercial software Altair OptiStruct. For the academic benchmark, the optimised layouts with respect to static and dynamic objectives are visualised on the Pareto frontier and reported with the corresponding density distribution. Results show a progressive and consistent transition between the two extreme single-objective layouts and confirm that the minimum number of evaluations was required to fill the smart Pareto front. The multi-objective strategy is then coupled with Altair OptiStruct and used to optimise a full-scale wing box, with the clear purpose to fill a gap in multi-objective topology optimisation applied to the wing primary structure. The proposed methodology proved that it can generate efficiently non-dominated optimised configurations, at a computational cost that is mainly driven by the model complexity. This strategy is particularly indicated for the preliminary design phase, as it releases the designer from the burden to assign preferences. Furthermore, the ease of integration into a commercial design tool makes it available for industrial applications.

Funder

Engineering and Physical Sciences Research Council

Airbus UK

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3