Topology optimization for fatigue reserve factors

Author:

Sartorti RomanORCID,Kriegesmann Benedikt,Hawla David,Pedersen Claus B. W.

Abstract

AbstractThis paper describes a topology optimization approach that applies the common fatigue analysis practices of rainflow cycle counting and critical plane searches to cover both proportional and non-proportional fatigue loading conditions of metals. The existing literature on topology optimization has so far mainly considered fatigue damage under proportional loading conditions and typically uses continuous damage models to avoid the discontinuous nature of fatigue rainflow cycle counting and critical plane searches. Furthermore, previous publications often introduced heuristic schemes to scale the fatigue damage and set the move limits for the design variables rather low to avoid oscillations in the design variables and damage responses during the optimization iterations, because fatigue damage is typically highly localized. Therefore, these approaches cause many optimization iterations. Contrarily, our present approach applies the fatigue reserve factor (FRF) directly in the optimization formulation instead of the fatigue damage where FRF is a fatigue reserve factor for infinite fatigue life. The inverse FRF scales nearly linearly with the stresses. Therefore, the present approach needs no heuristic scaling for the fatigue topology optimization. The numerical implementation applies the semi-analytic adjoint sensitivity method for multiple load cases. Numerically, FRF shows more stable optimization convergence using less optimization iterations. Different FRF topology-optimized designs for a variety of fatigue damage types are validated and compared. Additionally, the optimized FRF designs are compared to both strictly stiffness optimized designs and stress strength optimized designs.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3