Development and mechanical characterization of cenosphere-reinforced CFRP and natural rubber core sandwich composite

Author:

Aithal Nithin U.,Mahesh VishwasORCID,Mahesh VinyasORCID,Ponnusami Sathiskumar Anusuya,Harursampath Dineshkumar

Abstract

AbstractDriven by the growing concern for environmental sustainability, there is an increasing need to explore innovative approaches for repurposing industrial waste materials. This study focuses on investigating the potential uses and challenges associated with cenosphere, a waste product derived from coal combustion in thermal power plants. Typically regarded as waste, cenosphere offers an opportunity to contribute to sustainability efforts. The objective of this research is to evaluate the influence of cenosphere, a ceramic-rich industrial waste, on the mechanical properties of woven CFRP-Rubber-CFRP (Carbon fibre-reinforced polymers) sandwich composites. The composite specimens were fabricated using the conventional hand lay-up technique, incorporating different weight percentages (5, 10, 15, and 20 wt.%) of cenosphere as a particulate filler. Tensile, flexural, and impact testing were conducted according to ASTM standards to assess the impact of the filler content on the mechanical properties. The results demonstrate that the inclusion of approximately 15% by weight of discarded cenosphere significantly enhances the tensile strength, flexural strength, interlaminar shear strength (ILSS), and impact strength of the sandwich composites, yielding improvements of approximately 1.6, 1.56, 2.06, and 1.85 times, respectively, compared to unfilled composites. Microscopic analysis of the composites reveals a well-dispersed cenosphere distribution within the matrix, contributing to the notable enhancement in overall strength characteristics.

Funder

SERB

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3