A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment

Author:

Kozik RafałORCID,Pawlicki MarekORCID,Choraś MichałORCID

Abstract

AbstractThe Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is supported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3