Novel clustering-based pruning algorithms

Author:

Zyblewski PawełORCID,Woźniak MichałORCID

Abstract

AbstractOne of the crucial problems of designing a classifier ensemble is the proper choice of the base classifier line-up. Basically, such an ensemble is formed on the basis of individual classifiers, which are trained in such a way to ensure their high diversity or they are chosen on the basis of pruning which reduces the number of predictive models in order to improve efficiency and predictive performance of the ensemble. This work is focusing on clustering-based ensemble pruning, which looks for the group of similar classifiers which are replaced by their representatives. We propose a novel pruning criterion based on well-known diversity measures and describe three algorithms using classifier clustering. The first method selects the model with the best predictive performance from each cluster to form the final ensemble, the second one employs the multistage organization, where instead of removing the classifiers from the ensemble each classifier cluster makes the decision independently, while the third proposition combines multistage organization and sampling with replacement. The proposed approaches were evaluated using 30 datasets with different characteristics. Experimentation results validated through statistical tests confirmed the usefulness of the proposed approaches.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Argo data anomaly detection algorithm based on selective ensemble of fuzzy clustering;Journal of Physics: Conference Series;2024-08-01

2. A comprehensive ensemble pruning framework based on dual-objective maximization trade-off;Knowledge and Information Systems;2024-05-10

3. An efficient semi-dynamic ensemble pruning method for facial expression recognition;Multimedia Tools and Applications;2024-02-13

4. The Implementation of Quantum Annealing for Ensemble Pruning;Lecture Notes in Networks and Systems;2024

5. Annealing-Based Optimization for Selecting Training Space in Ensemble Learning;2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA);2023-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3