Do female bluethroats without extra-pair offspring have more MHC-compatible social mates?

Author:

Rekdal Silje L.ORCID,Anmarkrud Jarl AndreasORCID,Lifjeld Jan T.ORCID,Johnsen ArildORCID

Abstract

Abstract Genes of the major histocompatibility complex (MHC) are crucial for adaptive immunity in jawed vertebrates, and theory predicts that there should be mate choice for optimizing MHC constitution in the offspring. In a previous study, we demonstrated a non-random female choice of extra-pair males in the bluethroat (Luscinia svecica), yielding offspring that was closer to an intermediate MHC class II (MHCII) allele count than their within-pair halfsiblings. The present study tests whether social pairs with only within-pair young (WPY) in their brood, in the same study population, had a combined MHC-constitution closer to a presumed intermediate optimum, than social pairs with extra-pair young (EPY), with a corresponding pattern in their offspring. As expected, we found that WPY from pure WPY-broods were more MHC-optimal than WPY from mixed broods, but only in broods of young (second year) males. Correspondingly, there was a tendency for social pairs with only WPY in their brood to be more MHC-compatible than social pairs with EPY in their brood, when the male was young. Older bluethroat males have considerably larger testes than young males, and their higher sperm competitiveness could help them secure paternity in their own brood, also when they are not MHC-compatible. In other words, in the sexual conflict over paternity, females may be more likely to realise their preference for a MHC-compatible mate when paired to a young male. As a possible fitness indicator, immune responsiveness to an injected antigen (PHA) was elevated for offspring closer to “the golden mean” in MHCII allele count. Significance statement This study contributes to our understanding of MHC-based mate choice in extra-pair mating systems, by showing that female bluethroats (Luscinia svecica) with an MHCII-compatible social mate tend to have no extra-pair young in their brood, but only when the social male is young. This elucidates a possible sexual conflict, in which older social males are able to override female preferences and prevent other males from gaining paternity in their brood through higher sperm production. Studying systems in which extra-pair paternity occurs offers an insight into the genetic benefits of mate choice, as extra-pair males, in contrast to social males, generally contribute only sperm. Further, the strict and thorough genotyping scheme applied in this study enabled us to demonstrate a preference for “the golden mean” in MHC-diversity in a species with one of the highest MHC class II-diversity known to date.

Funder

Nansen Endowment

Norges Forskningsråd

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3