Colony fitness increases in the honey bee at queen mating frequencies higher than genetic diversity asymptote

Author:

Delaplane Keith S.ORCID,Given J. Krispn,Menz JohnORCID,Delaney Deborah A.

Abstract

Abstract Across the eusocial Hymenoptera, a queen’s mating frequency is positively associated with her workers’ genetic diversity and colony’s fitness. Over 90% of a colony’s diversity potential is achieved by its mother’s tenth effective mating (me); however, many females mate at levels of me > 10, a zone we here call hyperpolyandry. We compared honey bee colony fitness at mating levels near and above this genetic diversity asymptote. We were interested in how hyperpolyandry affects colony phenotypes arising from both common tasks (brood care) and rare specialized tasks (parasite resistance). We used an unselected wild line of bees and a Varroa Sensitive Hygiene (VSH) line selected to resist the parasite Varroa destructor. Virgin queens were instrumentally inseminated to replicate the following queen/colony conditions: (1) VSH semen/low polyandry (observed mating number = mo = 9), (2) VSH semen/high polyandry (mo = 54), (3) wild type semen/low polyandry, or (4) wild semen/high polyandry. There was a positive effect of polyandry on brood survival, an outcome of common tasks, with highest values at mo = 54. There was an interaction between polyandry and genetics such that differences between genetic lines expressed only at mo = 54, with fewer mites in VSH colonies. These results are consistent with two hypotheses for the evolution of mating levels in excess of the genetic diversity asymptote: hyperpolyandry improves colony fitness by (1) optimizing genotype compositions for common tasks and (2) by capturing rare specialist allele combinations, resisting cliff-edge ecological catastrophes. Significance statement Polyandry is a female’s practice of mating with several males, storing their sperm, and using it to produce one or more clutches of genetically diverse offspring. In the social Hymenoptera, polyandry increases the genetic diversity and task efficiency of workers, leading to improved colony fitness. Over 90% of the increase in a colony’s diversity potential is achieved by its mother’s tenth mating; however, many females practice hyperpolyandry, a term we reserve here for mating levels above this genetic diversity asymptote. We show that a token of colony fitness arising from common tasks, brood survival, improves universally as one moves from sub- to hyperpolyandrous mating levels. However, a colony phenotype arising from a rare parasite resistance task is only expressed in the presence of the controlling alleles and under conditions of hyperpolyandry. These results suggest adaptive mechanisms by which hyperpolyandry could evolve.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3