Overlapping community finding with noisy pairwise constraints

Author:

Alghamdi ElhamORCID,Rushe Ellen,Mac Namee Brian,Greene Derek

Abstract

AbstractIn many real applications of semi-supervised learning, the guidance provided by a human oracle might be “noisy” or inaccurate. Human annotators will often be imperfect, in the sense that they can make subjective decisions, they might only have partial knowledge of the task at hand, or they may simply complete a labeling task incorrectly due to the burden of annotation. Similarly, in the context of semi-supervised community finding in complex networks, information encoded as pairwise constraints may be unreliable or conflicting due to the human element in the annotation process. This study aims to address the challenge of handling noisy pairwise constraints in overlapping semi-supervised community detection, by framing the task as an outlier detection problem. We propose a general architecture which includes a process to “clean” or filter noisy constraints. Furthermore, we introduce multiple designs for the cleaning process which use different type of outlier detection models, including autoencoders. A comprehensive evaluation is conducted for each proposed methodology, which demonstrates the potential of the proposed architecture for reducing the impact of noisy supervision in the context of overlapping community detection.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3