Estimating PageRank deviations in crawled graphs

Author:

Holzmann Helge,Anand Avishek,Khosla MeghaORCID

Abstract

Abstract Most real-world graphs collected from the Web like Web graphs and social network graphs are partially discovered or crawled. This leads to inaccurate estimates of graph properties based on link analysis such as PageRank. In this paper we focus on studying such deviations in ordering/ranking imposed by PageRank over crawled graphs. We first show that deviations in rankings induced by PageRank are indeed possible. We measure how much a ranking, induced by PageRank, on an input graph could deviate from the original unseen graph. More importantly, we are interested in conceiving a measure that approximates the rank correlation among them without any knowledge of the original graph. To this extent we formulate the HAK measure that is based on computing the impact redistribution of PageRank according to the local graph structure. We further propose an algorithm that identifies connected subgraphs over the input graph for which the relative ordering is preserved. Finally, we perform extensive experiments on both real-world Web and social network graphs with more than 100M vertices and 10B edges as well as synthetic graphs to showcase the utility of HAK and our High-fidelity Component Selection approach.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Retrievability and PageRank Measures;Proceedings of the 15th Annual Meeting of the Forum for Information Retrieval Evaluation;2023-12-15

2. On the feasibility of crawling-based attacks against recommender systems;Journal of Computer Security;2021-11-04

3. Big Enough to Care Not Enough to Scare! Crawling to Attack Recommender Systems;Computer Security – ESORICS 2020;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3