Abstract
AbstractLet $$0\le q\le 1$$
0
≤
q
≤
1
and $$\mathbb {N}$$
N
denotes the set of all positive integers. In this paper we will deal with it too the family $${\mathcal {U}}(x^q)$$
U
(
x
q
)
of all regularly distributed set $$X=\{x_1<x_2<\cdots<x_n<\cdots \} \subset \mathbb {N}$$
X
=
{
x
1
<
x
2
<
⋯
<
x
n
<
⋯
}
⊂
N
whose ratio block sequence $$\begin{aligned} \frac{x_1}{x_1}, \frac{x_1}{x_2}, \frac{x_2}{x_2}, \frac{x_1}{x_3}, \frac{x_2}{x_3}, \frac{x_3}{x_3}, \dots , \frac{x_1}{x_n}, \frac{x_2}{x_n}, \dots , \frac{x_n}{x_n}, \dots \end{aligned}$$
x
1
x
1
,
x
1
x
2
,
x
2
x
2
,
x
1
x
3
,
x
2
x
3
,
x
3
x
3
,
⋯
,
x
1
x
n
,
x
2
x
n
,
⋯
,
x
n
x
n
,
⋯
is asymptotically distributed with distribution function $$g(x) = x^q;\ x \in (0,1]$$
g
(
x
)
=
x
q
;
x
∈
(
0
,
1
]
, and we will show that the regular distributed set, regular sequences, regular variation at infinity are equivalent notations. In this paper also we discuss the relationship between notations as (N)-denseness, directions sets, generalized ratio sets, dispersion and exponent of convergence.
Funder
Narodowe Centrum Nauki
Agentúra na Podporu Výskumu a Vývoja
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference22 articles.
1. Baláž, V., Mišík, L., Strauch, O., Tóth, J.T.: Distribution functions of ratio sequences, IV. Period. Math. Hung. 66, 1–22 (2013)
2. Baláž, V., Mišík, L., Strauch, O., Tóth, J.T.: Distribution functions of ratio sequences, III. Publ. Math. Debr. 82, 511–529 (2013)
3. Bukor, J., Filip, F., Tóth, J.T.: On properties derived from different types of asymptotic distribution functions of ratio sequences. Publ. Math. Debr. 95(1–2), 219–230 (2019)
4. Bukor, J., Tóth, J.T.: On some criteria for the density of the ratio sets of positive integers. JP J. Algebra Number Theory Appl. 3(2), 277–287 (2003)
5. Burris, S.N.: Number Theoretic Density and Logical Limit Laws, Mathematical Surveys and Monographs, vol. 86. American Mathematical Society, Providence (2001)