The Mixed Scalar Curvature of Almost-Product Metric-Affine Manifolds, II

Author:

Rovenski Vladimir,Zawadzki TomaszORCID

Abstract

AbstractWe continue our study of the mixed Einstein–Hilbert action as a functional of a pseudo-Riemannian metric and a linear connection. Its geometrical part is the total mixed scalar curvature on a smooth manifold endowed with a distribution or a foliation. We develop variational formulas for quantities of extrinsic geometry of a distribution on a metric-affine space and use them to derive Euler–Lagrange equations (which in the case of space-time are analogous to those in Einstein–Cartan theory) and to characterize critical points of this action on vacuum space-time. Together with arbitrary variations of metric and connection, we consider also variations that partially preserve the metric, e.g., along the distribution, and also variations among distinguished classes of connections (e.g., statistical and metric compatible, and this is expressed in terms of restrictions on contorsion tensor). One of Euler–Lagrange equations of the mixed Einstein–Hilbert action is an analog of the Cartan spin connection equation, and the other can be presented in the form similar to the Einstein equation, with Ricci curvature replaced by the new Ricci type tensor. This tensor generally has a complicated form, but is given in the paper explicitly for variations among semi-symmetric connections.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

Reference33 articles.

1. Aldrovandi, R., Pereira, J.G.: Teleparallel gravity. An introduction. Fundamental Theories of Physics 173. Springer, Dordrecht (2013)

2. Barletta, E., Dragomir, S., Rovenski, V., Soret, M.: Mixed gravitational field equations on globally hyperbolic space-times. Class. Quantum Gravity 30(8), 085015 (2013)

3. Barletta, E., Dragomir, S., Rovenski, V.: The mixed Einstein–Hilbert action and extrinsic geometry of foliated manifolds. Balkan J. Geom. Appl. 22(1), 1–17 (2017)

4. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Dekker, New York (1996)

5. Bejancu, A., Farran, H.: Foliations and Geometric Structures. Springer, Berlin (2006)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3