Optimal multivariate mixture: a genetic algorithm approach

Author:

Sgarro Giacinto AngeloORCID,Grilli Luca,Santoro Domenico

Abstract

AbstractThe Optimal Multivariate Mixture Problem (OMMP) consists of finding an optimal mixture which, starting from a set of elements (items) described by a set of variables (features), is as close as possible to an ideal solution. This problem has numerous applications spanning various fields, including food science, agriculture, chemistry, materials science, medicine, and pharmaceuticals. The OMMP is a class of optimization problems that can be addressed using traditional Operations Research (OR) approaches. However, it can also be effectively tackled using meta-heuristic techniques within Artificial Intelligence (AI). This paper aims to present an Artificial Intelligence perspective. It proposes a Genetic Algorithm (GA) for Optimal Multivariate Mixture (GA-OMM), a novel improved version of a GA whose modified genetic operators prove to improve the exploration efficiency. Here, the algorithm is described in its general framework, and a test case 8-items 5-features is conducted to evaluate efficiency by exploring various combinations of hyperparameters. Test cases are also set up for the previous version, as well as a linear programming (LP) approach. The data experiments indicate that the proposed GA is efficient, converges towards the global optimum, consistently outperforms its predecessor, and delivers highly competitive results. In particular, GA-OMM shows an average fitness of GA-OMMP/LP and standard deviation with an order of magnitude ranging between $$10^{-8}$$ 10 - 8 to $$10^{-4}$$ 10 - 4 . Moreover, it consistently outperforms its predecessor, which exhibits similar values around $$10^{-3}$$ 10 - 3

Funder

Università di Foggia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3