Sparse regression modeling for short- and long‐term natural gas demand prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Decision Sciences
Link
https://link.springer.com/content/pdf/10.1007/s10479-021-04089-x.pdf
Reference84 articles.
1. Akpınar, M., & Yumuşak, N. (2013). Forecasting household natural gas consumption with ARIMA model: A case study of removing cycle. In IEEE international conference on application of information and communication technologies
2. 23-25 October 2013 (pp. 319-324).
3. Aydınalp-Köksal, M., & Uğursal. V. I (2008). Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Applied Energy, 85(4), 271–296.
4. Bai, Y., & Li, C. (2016). Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energy and Buildings, 127, 571–579.
5. Balalla, D.-T., Nguyen-Huy, T., & Deo, R. (2021). MARS model for prediction of short- and long-term global solar radiation. Predictive Modelling for Energy Management and Power Systems Engineering, 391–436.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Bi-objective location-routing model for the healthcare waste management in the era of logistics 4.0 under uncertainty;International Journal of Production Economics;2024-10
2. Modeling, prediction and analysis of natural gas consumption in China using a novel dynamic nonlinear multivariable grey delay model;Energy;2024-10
3. A shared-input integer network DEA approach linking football teams’ wages and market values;Omega;2024-06
4. Application of forecasting strategies and techniques to natural gas consumption: A comprehensive review and comparative study;Engineering Applications of Artificial Intelligence;2024-03
5. Forecasting duty-free shopping demand with multisource data: a deep learning approach;Annals of Operations Research;2024-02-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3